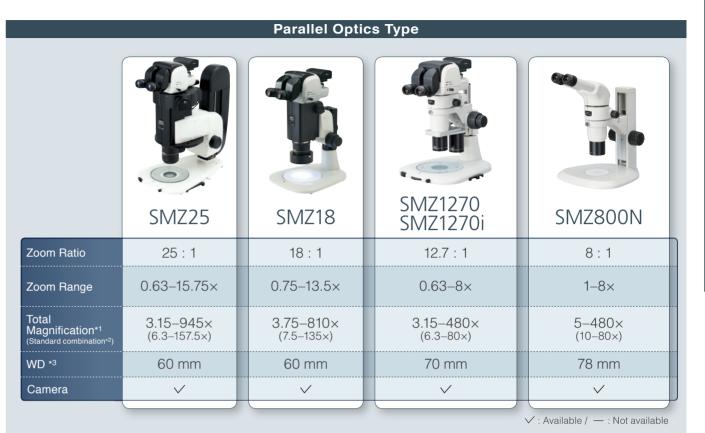


RUMEN

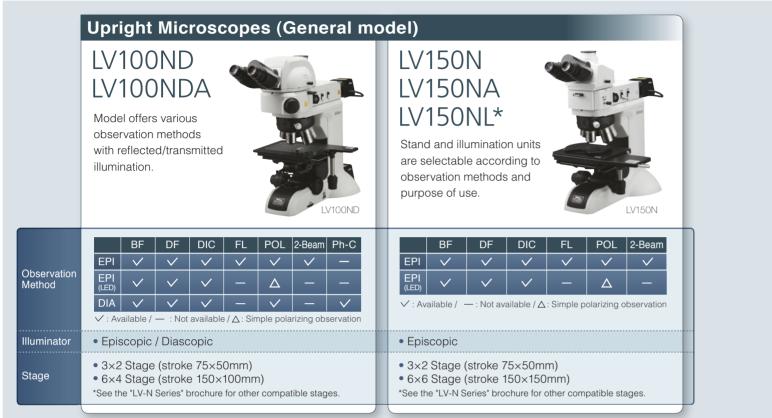

Industrial Instruments General Brochure

INDEX

Stereo Microscopes		3
Parallel Optics Type– SMZ25 / SMZ18 / SMZ1270 / SMZ1270i / SIGreenough Type– SMZ745 / SMZ745T / SMZ445 / SMZ460 / S		
Industrial Microscopes		4-5
Upright Microscopes- LV100ND / LV100NDA / LV1Inverted Metallurgical Microscopes- MA100N / MA200Polarizing Microscopes- LV100NPOL / Ci POL	50N / LV150NA / LV150NL / L200	N / L200ND / L300N / L300ND
Digital Cameras for Microscopes		6
Microscope Camera – Digital Sight 1000 Microscope Camera – DS-Fi3	Microscope Camera – DS-I Imaging Software – NIS-	Ri2 Elements L/D/Ar/Br
Optical Interferometric Microscope	Systems	7
Optical Interferometric Microscope Systems – BW-S500 Series		
Objective Lenses Objective Lenses - CFI60-2 / CFI60		8
For Incorporation into Microscopes		9
Modular Focusing Units – IM-4 / LV-IM / LV-FM / LV-FMA Dynamic Auto-Focus Unit – LV-DAF	Compact Reflected Microsco Wafer Loaders	– CM Series – NWL200 Series
CNC Video Measuring Systems		10-11
CNC Video Measuring Systems - iNEXIV VMA Series / CNC Confocal Video Measuring Systems - NEXIV VMZ-K Series	NEXIV VMZ-S Series / NEXIV VMZ	-R Series
Measuring Microscopes		12
Measuring Microscopes - MM-200 / MM-400 / MM-800		
Profile Projectors / Data Processing Profile Projectors – V-12B / V-20B Data Processing Software – E-MAX	Systems Data Processor - DP-E1A	13
Autocollimatoro / DICIMICDO		1./
Autocollimators / DIGIMICRO Autocollimators – 6B-LED / 6D-LED	DIGIMICRO – MF-1001 / MF-5	01 / MH-15M
Optical Flat / Optical Parallel / Stand	dard 300 mm Sca	ale 15

Stereo Microscopes

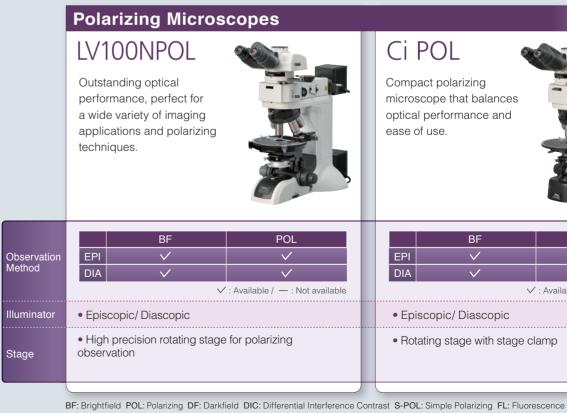
The highly cost-effective SMZ series offer outstanding optical performance, flexible system expandability, and superb operability.


Greenough Type								
	SMZ745 SMZ745T		SMZ445 SMZ460			SMZ-2		
Zoom Ratio	7.5 : 1		4.4 : 1 4.3 : 1			5 : 1		
Zoom Range	0.67–5×		0.8 –3.5×	0.7 –3×		0.8–4×		
Total Magnification*1 (Standard combination*2)	3.35–300× (6.7–50×)		4–70× (8–35×)	3.5–60× (7–30×)		4–120× (8–40×)		
WD *3	115 mm		100 mm		100 mm			77.5 mm
Camera	✓ (SMZ745T only)		—					
						\checkmark : Available / — : Not available		

*1: Depending on combination of Eyepiece and Objective lens. *2: Combination of Eyepiece 10x and Objective lens 10x. *3: Objective lens 1x or no Auxiliary lens.

SMZ Series

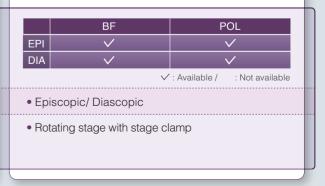
Industrial Microscopes


Nikon's Industrial Microscopes utilize the CFI60-2 optical system, highly evaluated for providing a high NA combined with long WD.

BF: Brightfield DF: Darkfield DIC: Differential Interference Contrast FL: Fluorescence POL: Polarizing 2-Beam: Two-Beam Interferometry Ph-C: Phase-Contrast *Only BF, DIC, and S-POL are available for LV150NL

	Upright Microscopes (Large-sized	Upright Microscopes (Large-sized stage model)						
	L200N	L300N						
	L200ND	L300ND						
	Stage with stroke 200×200mm is available. Suitable for ø200mm wafer observation.	Stage with stroke 350×300mm is available. Suitable for ø300mm wafer observation.						
Observation Method	BF DF DIC S-POL FL EPI ✓ ✓ ✓ ✓ ✓* DIA ✓* — — — — *L200ND only ✓ : Available / — : Not available — —	BFDFDICS-POLFLEPI \checkmark \checkmark \checkmark \checkmark \checkmark DIA \checkmark^* \checkmark -*L300ND only \checkmark : Available /: Not available						
Illuminator	 L200N : Episcopic L200ND : Episcopic / Diascopic 	L300N : Episcopic L300ND : Episcopic / Diascopic						
Stage	• 8×8 Stage (stroke: 200×200mm)	• 14×12 Stage (stroke: 350×300mm)						
	BF: Brightfield DF: Darkfield DIC: Differential Interference Contrast S-POL:	Simple Polarizing FL: Fluorescence						

Inverted Metallurgical Microscopes MA100N MA100N is compact, inverted microscopes designed for brightfield and simple polarizing observations. ΒF DF S-POL DIC FL EPI \checkmark \checkmark Observation Method ✓ : Available / — : Not available *Dedicated reflected illumination models. lluminator • Episcopic • MA-SR-N Rectangular 3-plate Stage N (stroke 50×50mm) • MA-SP-N Plain Stage N Stage • TS2-S-SM Mechanical Stage CH (stroke 126×78mm) *Please use in combination with MA-SP-N Plain stage N. BF: Brightfield DF: Darkfield DIC: Differential Interference Contrast S-POL: Simple Polarizing FL: Fluorescence



ECLIPSE Series

Compact polarizing microscope that balances optical performance and ease of use.

Digital Cameras for Microscopes

Digital Sight Series

Imaging software NIS-Elements

Using a tablet PC

A wide variety of tools

Measurement function

Line distance 2 Area

Circle distance Pitch distance

Annotate function

Circle

🔺 Angle

/ Line

A Text

Scene Mode

Wafer/IC

6

Circuit board

Arrow

+: Marker

Polyline

Simply installing NIS-Elements L on a tablet PC enables setting and control of Digital Sight 1000/DS-Fi3/DS-Ri2 microscope cameras, live image display, and image acquisition.

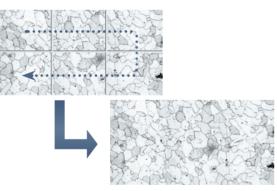
NIS-Elements L enables the conducting of simple measurements on

images, with input of lines and comments. These can also be written

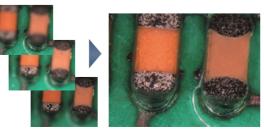
onto and saved with the image, and measurement data can be output.

Ten camera setting patterns for optimal color reproduction and contrast for each microscope light source, observation method and type of sample, as well as custom settings, can be selected.

• Metal, Ceramic/Plastic


Flat Panel Display

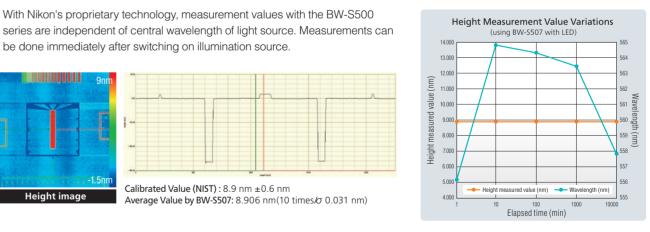
Using a desktop PC F D Br Ar

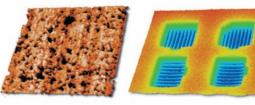

Image Stitching

Stitches together images acquired from multiple fields of view to create one image.

EDF (Extended Depth of Focus)

Create a single, all-in-focus image from images of differing focus.

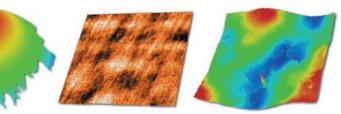

Optical Interferometric Microscope Systems


Nikon's proprietary scanning-type optical interference measurement technology achieves 1 pm height resolution. Nikon offers variety application, lustrous surfaces, such as silicon wafer, glass and metallic deposition surfaces. 光設計賞 * The range can be extended by stitching BW-\$50 8 nm Step Height Sample High Accuracy and Repeatability The BW-S500 series is calibrated by an 8 nm or 8 µm VLSI Step Height Standards sample, certified by the NIST. Achieves extremely high accuracy and 8.9 nm repeatability as a height measurement system. 9 nm 2.2 mm -1.5 m

Height Resolution (algorithm)	1 pm					
Step Height Measurement Reproducibility	σ : 8 nm (8 μm Step height measuremen					
Number of Pixels	2,046×2,046	1,022×1,022				
Height Measurement Time	19 s (10 µm scan)	8 s (10 µm scan)				
Field of view	< 4,448×4,448 μm*					

VL/Istandard	ind ind		NVLAP
CERTIFIC	ATE OF C	ALIBRATI	ON
	TEP HEIGHT ETANG	ano	
		An ini Roma	
Autoria Autori	-		
DAMAGE STAT 160			
-	franker Transferrer		
1			
	the other sectors and the		
Annual section of	-		
Transfer .	12:12		
the sector is advected to the sector is the sector is a sector is an advected to the sector is a secto			
Ale		1 Sala	-
The Statistics of a Description of the other Name and the State of the	the state of the second	COLUMN TRAVELY AND A	a feat
	-	- av.	/
	Page 1472		

Measured value unsusceptible to variation of central wavelength of light source



Polished ceramic surface

Metal Etching Surface

Lens

BW-S500 Series

Glass

Glossy paper

Objective Lenses

CFI60-2 / CFI60

Nikon's CFI60-2/CFI60 optical systems are highly evaluated for their unique concept of high NA combined with a long working distance. These lenses have been developed further and evolved achieving the apex in long working distance specifications, correct chromatic aberration, and an optimized lens weight.

Erner Five	Transford	Street Free	Street France
Erner Sine	2000-00-00	Street Free	Stationary 1
South Carlos	2000-00-00	Street Harris	June Service

NA: Numerical Aperture BF: Brightfield DF: Darkfield POL: Polarizing S-POL: Simple Polarizing DIC: Differential Interference Contrast UV-FL: UV Fluorescence FL: EPI Fluorescence

	Model	Magnification	NA	WD (mm)	BF	DF	POL	S-POL	DIC	UV-FL	FL
	T Plan EPI	1×	0.03	3.8		_	-		_	-	—
	Plan (Semi-apochromat)	2.5×	0.075	6.5		—	—	—	—	-	—
	TU Plan Fluor EPI	5×	0.15	23.5	V	—		~	✓A	V	\checkmark
	Universal Plan Fluor (Semi-apochromat)	10×	0.3	17.5	│	-	—	~	✓A		\checkmark
		20×	0.45	4.5	✓	-	-	\checkmark	✓A	V	\checkmark
		50×	0.8	1.0		—	—	~	✓A		\checkmark
		100×	0.9	1.0	│	-	-	\checkmark	✓A		\checkmark
	TU Plan Apo EPI	50×	0.8	2.0		—		\checkmark	νA		\checkmark
	Universal Plan Apo (Apochromat)	100×	0.9	2.0	│	-	-	\checkmark	✓A		\checkmark
		150×	0.9	1.5	✓	—	-	\checkmark	νA	-	\checkmark
	TU Plan Fluor EPI P	5×	0.15	23.5		—	\checkmark	\checkmark	νA	V	\checkmark
	Polarizing Universal Plan Fluor (Semi-apochromat)	10×	0.3	17.5	✓			\checkmark	✓A		\checkmark
		20×	0.45	4.5	│	—		\checkmark	νA		\checkmark
		50×	0.8	1.0	│			~	✓A		\checkmark
		100×	0.9	1.0	│	—		\checkmark	νA		\checkmark
CFI60-2	TU Plan EPI ELWD	20×	0.4	19.0	✓	—		\checkmark	VВ		\checkmark
CF160-2	Long Working Distance Universal Plan (Semi-apochromat)	50×	0.6	11.0		—	—	\checkmark	VВ		\checkmark
	(Semi-apochromat)	100×	0.8	4.5		_	_	\checkmark	∨B		\checkmark
	T Plan EPI SLWD Super Long Working Distance Plan (Semi-apochromat)	10×	0.2	37.0		—	—		—		\checkmark
		20×	0.3	30.0	✓	—	_	—	_		\checkmark
(Semi-apochional)	50×	0.4	22.0	│	—	—	—	—		\checkmark	
	TU Plan Fluor BD	100×	0.6	10.0	│	-		—	—	-	\checkmark
		5×	0.15	18.0	~	~	-	\checkmark	✓A	~	\checkmark
Universal Plan Fluor (Semi-apochromat)	10×	0.3	15.0		~	_	\checkmark	✓A		\checkmark	
	20×	0.45	4.5	│	~	-	\checkmark	✓A		\checkmark	
		50×	0.8	1.0		~	_	\checkmark	✓A		\checkmark
		100×	0.9	1.0		~	—	~	✓A		\checkmark
	TU Plan Apo BD	50×	0.8	2.0	V	~	_	~	✓A		\checkmark
	TU Plan Apo BD Universal Plan Apo (Apochromat)	100×	0.9	2.0	✓	~	—	\checkmark	✓A		\checkmark
		150×	0.9	1.5	✓	~	_	\checkmark	✓A	-	\checkmark
	TU Plan BD ELWD	20×	0.4	19.0	V	~	—	~	VВ		\checkmark
	Long Working Distance Universal plan	50×	0.6	11.0	✓	~	—	\checkmark	✓В		\checkmark
	(Semi-apochromat)	100×	0.8	4.5	~	~		\checkmark	VВ		\checkmark
	L Plan EPI (Achromat)	40×	0.65	1.0	~	-	-	-	_	-	\checkmark
	LU Plan Apo EPI / Universal Plan Apo (Apochromat)	150×	0.95	0.3	~	—	—	\checkmark	νA	-	\checkmark
	L Plan EPI CR	20×	0.45	10.9–10.0	~	_	-	-	—	-	\checkmark
	LCD Substrate Inspection Plan (Achromat)	50×	0.7	3.9–3.0		_	—	—	—		\checkmark
	*Offers valid while supplies last	100×	0.85	1.2-0.85		_	_	—	—		\checkmark
		100×	0.85	1.3–0.95		_		_	_		\checkmark
	LE Plan EPI (Achromat)	5×	0.1	31		—		—	—		\checkmark
CFI60		10×	0.25	13		—	—	—	—		\checkmark
		20×	0.4	3.6	✓			—	—		\checkmark
		50×	0.75	0.5	✓	—		—	—		\checkmark
		100×	0.9	0.31		-	—	-	_	-	\checkmark
	LE Plan BD (Achromat)	5×	0.1	18		\checkmark			_		\checkmark
		10×	0.25	13	~	~	_	—	—		\checkmark
		20×	0.4	3.6	~	~	_	—	—		\checkmark
		50×	0.75	0.5		~	_	—	—	-	\checkmark

✓ : Available / — : Not available *A: Set prism position at A / B: Set prism position at B

For Incorporation into Microscopes

Modular Focusing Units

IM-4, LV-IM/LV-IMA, LV-FM/LV-FMA

Suitable for incorporating into systems, these focusing units enable the mounting of a universal illuminator and a motorized nosepiece.

	IM-4	LV-IM/LV-IMA	1
Туре	Manual	Manual / Motorized	Ma
Vertical Stroke	30 mm	30/20 mm	

Dynamic Auto-Focus Unit

LV-DAF

Hybrid Auto-focus features a wide focus range and fast tracking ability. A wide range of observation methods are supported, including brightfield, darkfield, and DIC. Reflective and transparent samples can both be observed.

*Not compatible with NIS-Elements imaging software

Detection System	Split Projection System/ Contrast D
AF Light Source	Near Infrared LED (λ=77
Focal Time	within 0.7 sec (Obj. lens: 20×, Distance fron
Observation	Brightfield, Darkfield, Polariz
	R

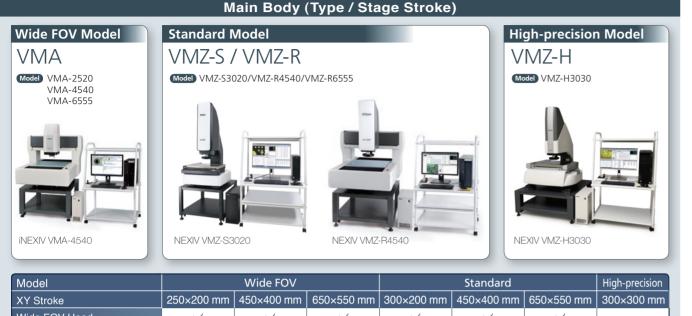
Compact Reflected Microscopes

CM Series

Ultra-compact reflected microscopes designed for integration into production lines to observe on monitors.

	CM-5A	CM-10A/CM-1
Camera Mount		C-mount (E
Tube Lens Magnification	—	1x
Compatible Objectives	A series: CF	IC EPI Plan objectiv
Illumination Optical System	K	oehler illumination (
Attachment Surfaces		3

Wafer Loaders


Nikon's proprietary technology ensures reliable loading of ultra-thin 100 µm wafers. The NWL 200 series achieve highly reliable loading, suitable for inspection of next-generation semiconductors.

	Diameter	ø200 mm / ø150 mi
Wafer	Thickness (standard)	300 um
	Thickness (option)	300–100 um
Surface	, back side macro inspection	\checkmark

CNC Video Measuring Systems iNEXIV Series / NEXIV Series

Wide variety of stage strokes and magnifications are available for various customer requirements.

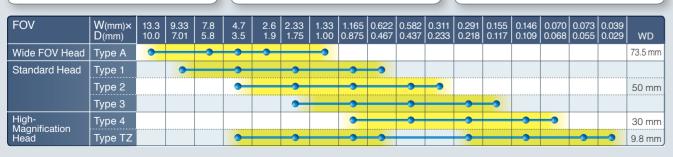
					51		
XY Stroke	250×200 mm	450×400 mm	650×550 mm	n 300×200 mm 450×400 mm 650×550 m		650×550 mm	300×300 mm
Wide FOV Head	\checkmark	\checkmark	\checkmark	\checkmark \checkmark		\checkmark	
Standard Head				\checkmark	\checkmark	\checkmark	\checkmark
High-Magnification Head				\checkmark	\checkmark	\checkmark	\checkmark
Z-axis Stroke	200 mm	200 mm	200 mm	200 mm	200 mm	200 mm	150 mm
Max. guaranteed loading capacity	15 kg	20 kg	30 kg	20 kg	40 kg	50 kg	30 kg
Maximum permissible error (Eux, MPE Euy, MPE)	2+8 <i>L</i> /1000 µm	2+6 <i>L</i> /1	000 µm	1.2+4 <i>L</i> /1000 μm			0.6+2 <i>L</i> /1000 µm
Maximum permissible error (Euz, MPE)	3+ <i>L</i> /50 μm	3+ <i>L</i> /1	0 μm 1.2+5 <i>L</i> /1000 μm			μm	0.9+ <i>L</i> /150 µm

L = Length in mm

long working distance enables comfortable

operation. Laser AF and Touch Probe can be attached as optional accessories.

*Touch Probe is an option only for VMA series.

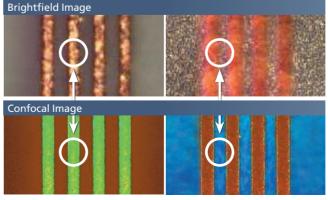

Zoom Heads

lights with adjustable angles. TTL (Through the Lens) Laser AF is a standard tool that can scan surfaces at 1000 points/second.

measurements of small targets up to several micrometers.

Simultaneous wide-area height measurements with confocal optics and 2D measurement with 15x brightfield zoom optics.

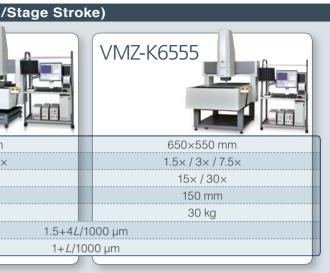
	Main Body (Type /
	VMZ-K3040
XY Stroke	300×400 mm
Magnification (Type S)	1.5× / 3× / 7.5×
Magnification (Type H)	15×/30×
Z-axis Stroke	150 mm
Max. guaranteed loading capacity	20 kg
Maximum permissible error (Eux, MPE Euy, MPE)	
Maximum permissible error (Euz, MPE)	


						Z	oom	Hea	ds								
FOV	W(mm)× D(mm)	8 6	4 3	2.0 1.5	1.6 1.2	1.26 0.95	1.00 0.75	0.8 0.6	0.63 0.47	0.53 0.40	0.4 0.3	0.27 0.20	0.20 0.15	0.11 0.08	0.100 0.074		WD
Type S	1.5×	•											ĺ				24mm
	3×		-														24mm
	7.5×				•												5mm
Туре Н	15×					-											20mm
	30×								•		-9-						5mm
													Bright	tfield	Confo	cal/Brig	htfield

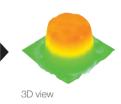
Confocal NEXIV incorporates confocal optics for fast and accurate evaluation of fine three-dimensional geometries. Confocal Optics are designed for wide FOV height measurement.

High Contrast and Multileveled Sample (PCBs)

Brightfield observation can sometimes be difficult due to blurred lines along sample structure. These lines can be clearly observed and measured using Confocal optics.

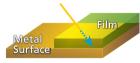

Top detected

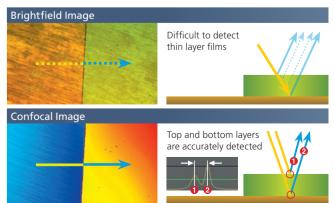
Bottom detected


Please refer to individual product brochures for further details. 10

Please refer to individual product brochures for further details.

Confocal NEXIV Series




Brightfield

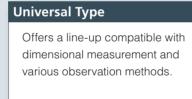
Contour

Thin Transparent Samples (Metal Surface Film / Semiconductor Resist)

Top layers of both thin transparent film and metal surface can be easily detected using Confocal optics.

Measuring Microscopes

Basic Model Large-Stage Model **Compact Model** Focused on high-precision and easy operability, a wide MM-200 MM-400 MM-800 range of MM-products are available. <u>50×50 mm / 5 kg</u> \checkmark \checkmark \checkmark 100×100 mm / 15 kg \checkmark 1 _ Stage Size/ 150×100 mm / 15 kg ____ \checkmark \checkmark Loading 200×150 mm / 20 kg \checkmark _ _ Capacity 250×150 mm / 20 kg \checkmark ____ 300×200 mm / 20 kg _ ____ \checkmark Max. Sample Height 110 mm 150 mm 200 mm Monocular Optical \checkmark \checkmark _ Head Binocular \checkmark 1 2-axis \checkmark \checkmark \checkmark X-Y-Z 3-axis \checkmark \checkmark _ CCD \checkmark^* \checkmark \checkmark


*For simple video head only

1×/3×/5×/10×

✓ : Available / — : Not available

With Nikon's optical technology and highly precise stages, high-precision measurement can be achieved.

High-Precision Stages

Obj. Magnification

MM Type

The coarse/fine changeover lever and the RESET and SEND buttons are located near the X- and Y-axis knobs.

X-axis Knob

Y-axis Knob

17

Focusing Aid (FA)

The Split-Prism FA delivers sharp patterns

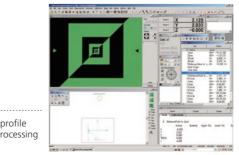
to allow accurate focusing during Z-axis measurements.

FA patterns are clearly visible because they are split vertically

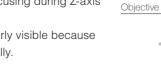
Profile Projectors

Nikon's profile projectors apply the principles of optics to the inspection of manufactured parts by projecting magnified silhouettes on a screen.

	50×50 mm / 5 kg	\checkmark
	100×100 mm / 15 kg	\checkmark
Stage Size/ Loading	150×100 mm / 15 kg	\checkmark
Capacity	200×150 mm / 20 kg	\checkmark
	250×150 mm / 20 kg	\checkmark
Max. Sample	e Height	100 mm* ²
Screen		305 mm
Image		Erect
Projection	Magnification	5×/10×/20×/25×/50×/100×/
Lens	FOV (with 10× lens)*1	30.5 mm
Digital Protra	ictor	\checkmark
Digital Count	er	\checkmark

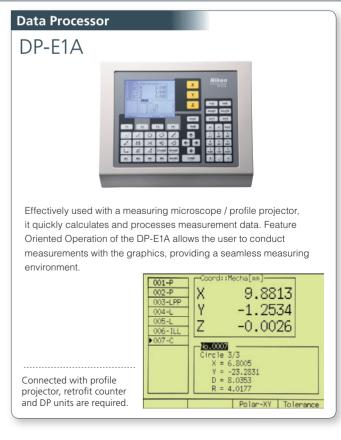

*1: Actual FOV = Effective diameter of screen / Lens magnification

*2: Maximum sample height is 70 mm when 200×150 mm stage is installed.

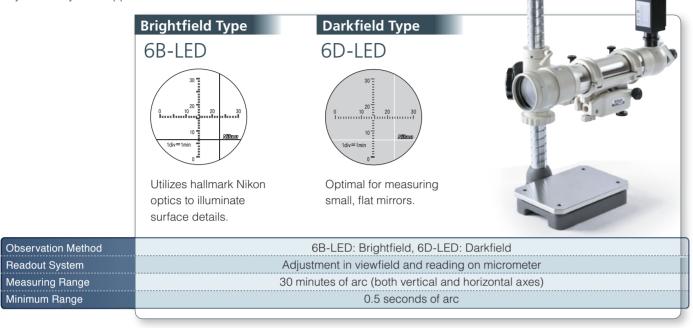

Data Processing Systems for Measuring Microscopes and Profile Projectors

Provides the user with various advanced measurements and processing functions. Automated edge detection with sub-pixel processing enables more precise and repeatable measurements.

Connected with profile projector, data processing functions only



1×/3×/5×/10×/20×/50×/100×


Front Focus

	Large-Screen Model V-20B
	\checkmark
	150 mm
	500 mm
	Inverted
200×	5×/10×/20×/50×/100×
	50 mm
	\checkmark
	✓
	\checkmark · Available / — · Not available

Autocollimators

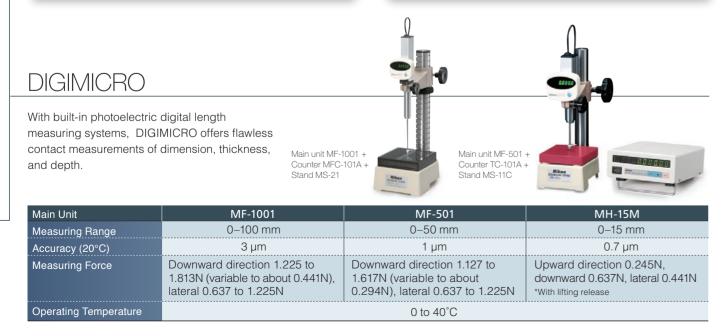
Autocollimator is an easy-to-use but precise metrology instrument for angularity, parallelism, perpendicularity, straightness of precision components machine guideway and many other applications.

Plane Mirror C

Both sides are perfectly parallel, permitting its use as a reference for non-reflective surface. Also useful for measuring extremely small angles where a smaller mirror is desirable. *Wooden case provided.

Riker

Outer Diameter30 mmThickness12 mmParallelism2 seconds of arc


LED Illuminator AC-L1

LED illumination unit for retrofitting onto Autocollimator 6B/6D illumination unit.

Power Source

AA batteries×2, AC adaptor

Optical Flat / Optical Parallel / Standard 300 mm Scale

Flatness level measured by interference fr by placing the flat in contact	observing inges optical	
sample.		
	Glass (ø60 mm)	Glass (ø130 mm)
sample.	a	

Standard 300mm Scale

Gauges stage travel accuracy up to 300 mm. Both 10 mminterval sensor patterns and calibrations are provided. Made of the glass with low coefficient of thermal expansion, for minimizing thermal influence. *Within 1 µm against compensation values.

Optical Pa	rallel
inished flat a t is used to c a sample by c nterference fr	heck the flatness and parallel levels of observing ringes by placing rallel in contact
	30 mm
Diameter	
Diameter Thickness	12 mm / 12.12 mm / 12.25 mm / 12.37 mm
	12 mm / 12.12 mm / 12.25 mm / 12.37 mm within 0.1 µm

*Optical flats and parallels with greater precision are available by custom orders.

Specifications and equipment are subject to change without any notice or obligation on the part of the manufacturer. November 2020 ©2014-2020 NIKON CORPORATION Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and other countries. Company and product names listed in this brochure are trademarks or registered trademarks of each company.

N.B. Export of the products* in this brochure is controlled under the Japanese Foreign Exchange and Foreign Trade Law. Appropriate export procedures shall be required in case of export from Japan. *Products: Hardware and its technical information (including software)

WARNING TO ENSURE CORRECT USAGE, READ THE CORRESPONDING MANUALS CAREFULLY BEFORE USING THE EQUIPMENT.

NIKON CORPORATION

Shinagawa Intercity Tower C, 2-15-3, Konan, Minato-ku, Tokyo 108-6290, Japan phone: +81-3-6433-3701 fax: +81-3-6433-3784 https://www.nikon.com/products/industrial-metrology/ http://www.nikonmetrology.com/ ISO 14001 Certified for NIKON CORPORATION

ISO 9001 Certified for NIKON CORPORATION Industrial Metrology Business Unit

NIKON METROLOGY EUROPE NV

Ricol ML Difference of the second sec

FRANCE phone: +33-1-60-86-09-76 fax: +33-1-60-86-57-35 E-mail: Sales.France.NM@nikon.com

NIKON METROLOGY GMBH GERMANY phone: +49-6023-91733-0 fax: +49-6023-91733-229 E-mail: Sales.Germany.NM@nikon.com

NIKON INSTRUMENTS S.p.A. ITALY phone: +39-055-300-96-01 fax: +39-055-30-09-93

NIKON METROLOGY, INC.

12701 Grand River Avenue, Brighton, MI 48116 U.S.A. phone: +1-810-220-4360 fax: +1-810-220-4300 E-mail: Sales.NM-US@nikon.com http://www.nikonmetrology.com/en-us NIKON CANADA INC. CANADA phone: +1-905-602-9676 fax: +1-905-602-9953 NIKON MEXICO- Metrology Showroom MEXICO phone: +52 (442) 688 5067 E-mail: Sales.NM-MX@nikon.com NIKON INSTRUMENTS (SHANGHAI) CO., LTD. CHINA (Shanghai branch) phone: +86-21-6841-2050 fax: +86-21-6841-2060 (Beijing branch) phone: +86-10-5831-2028 fax: +86-10-5831-2026 (Guangzhou branch) phone: +86-20-3882-0551 fax: +86-20-3882-0580 NIKON INSTRUMENTS KOREA CO., LTD. KOREA phone: +82-2-2186-8400 fax: +82-2-555-4415 NIKON SINGAPORE PTE LTD. SINGAPORE phone: +65-6559-3651 fax: +65-6559-3668

E-mail: NSG.Industrial-sales@nikon.com

NIKON MALAYSIA SDN BHD

MALAYSIA phone: +60-3-7809-3688 fax: +60-3-7809-3633 **PT. NIKON INDONESIA** INDONESIA phone: +62-267-864-3949 fax: +62-267-864-3950 **E-mail: PTN.Instruments@nikon.com NIKON SALES (THAILAND) CO., LTD.** THAILAND phone: +66-2633-5100 fax: 66-2633-5191 **NIKON INDIA PRIVATE LIMITED** INDIA phone: +91-124-4688500 fax: +91-124-4688527

Code No. 2CE-INTH-4